14 research outputs found

    Three-dimensional light sculptures and their interaction with atomic media: an experimentalist's guide

    Get PDF
    In recent years great progress was made in the spatial control of light with dynamic phase and amplitude modulators such as spatial light modulators and digital micromirror devices. In this work we describe the theory and practice of light shaping with such devices, detailing the spatial control of amplitude, phase and polarisation of coherent laser beams. We use our expertise in generating and measuring light fields with spatially dependent polarisation structures to characterise the correlations between spatial modes and polarisation in such light fields. We do this by adapting concurrence, a quantum measure of entanglement, to these classical correlations. One of the most promising application of coherent laser light is in the control of atomic media via atom-light interactions. In this work we describe the construction of simple external cavity diode lasers designed for the generation of resonant light for atomic physics applications. We exploit these lasers and spatial light modulators to create and measure three-dimensional atomic population structures in a warm rubidium vapour. We also implement a magneto-optic and a dynamic dark spontaneous-force optical trap for rubidium. These traps produce dense (~ 10^11 cm^-3) and cold (~100 uK) clouds of rubidium atoms. We develop the theory of spatially dependent electromagnetically induced transparency in such traps using rate equations. We find that the absorption of linearly polarised light depends on the relative direction of a magnetic field and the light polarisation. We use the cold atom clouds to measure the direction of magnetic fields by using this dependence and laser beams with structured polarisation

    Basis independent tomography of complex vectorial light fields by Stokes projections

    Full text link
    Complex vectorial light fields, non-separable in their polarization and spatial degree of freedom, are of relevance in a wide variety of fields encompassing microscopy, metrology, communication and topological studies. Controversially, they have been suggested as analogues to quantum entanglement, raising fundamental questions on the relation between non-separability in classical systems, and entanglement in quantum systems. Here we propose and demonstrate basis-independent tomography of arbitrary vectorial light fields by relating their concurrence to spatially resolved Stokes projections. We generate vector fields with controllable non-separability using a novel compact interferometer that incorporates a digital micro-mirror device (DMD), thus offering a holistic toolbox for the generation and quantitative analysis of arbitrary vectorial light fields

    Holographically controlled three-dimensional atomic population patterns

    Get PDF
    The interaction of spatially structured light fields with atomic media can generate spatial structures inscribed in the atomic populations and coherences, allowing for example the storage of optical images in atomic vapours. Typically, this involves coherent optical processes based on Raman or EIT transitions. Here we study the simpler situation of shaping atomic populations via spatially dependent optical depletion. Using a near resonant laser beam with a holographically controlled 3D intensity profile, we imprint 3D population structures into a thermal rubidium vapour. This 3D population structure is simultaneously read out by recording the spatially resolved fluorescence of an unshaped probe laser. We find that the reconstructed atomic population structure is largely complementary to the intensity structure of the control beam, however appears blurred due to global repopulation processes. We identify and model these mechanisms which limit the achievable resolution of the 3D atomic population. We expect this work to set design criteria for future 2D and 3D atomic memories

    Optimisation of arbitrary light beam generation with spatial light modulators

    Get PDF
    Phase only spatial light modulators (SLMs) have become the tool of choice for shaped light generation, allowing the creation of arbitrary amplitude and phase patterns. These patterns are generated using digital holograms and are useful for a wide range of applications as well as for fundamental research. There have been many proposed methods for optimal generation of the digital holograms, all of which perform well under ideal conditions. Here we test a range of these methods under specific experimental constraints, by varying grating period, filter size, hologram resolution, number of phase levels, phase throw and phase nonlinearity. We model beam generation accuracy and efficiency and show that our results are not limited to the specific beam shapes, but should hold for general beam shaping. Our aim is to demonstrate how to optimise and improve the performance of phase-only SLMs for experimentally relevant implementations

    Magneto-optical trapping in a near-surface borehole

    Full text link
    Borehole gravity sensing can be used in a number of applications to measure features around a well including rock-type change mapping and determination of reservoir porosity. Quantum technology gravity sensors based on atom interferometry have the ability to offer increased survey speeds and reduced need for calibration. While surface sensors have been demonstrated in real world environments, significant improvements in robustness and reductions to radial size, weight, and power consumption are required for such devices to be deployed in boreholes. To realise the first step towards the deployment of cold atom-based sensors down boreholes, we demonstrate a borehole-deployable magneto-optical trap, the core package of many cold atom-based systems. The enclosure containing the magneto-optical trap itself had an outer radius of (60±0.160\pm0.1) mm at its widest point and a length of (890±5890\pm5) mm. This system was used to generate atom clouds at 1 m intervals in a 14 cm wide, 50 m deep borehole, to simulate an in-borehole gravity surveys are performed. During the survey the system generated on average clouds of (3.0 ±0.1)×105\pm 0.1) \times 10^{5} 87^{87}Rb atoms with the standard deviation in atom number across the survey observed to be as low as 9×1049 \times 10^{4}

    Magneto-optical trapping in a near-suface borehole

    Get PDF
    Borehole gravity sensing can be used in a number of applications to measure features around a well, including rock-type change mapping and determination of reservoir porosity. Quantum technology gravity sensors, based on atom interferometry, have the ability to offer increased survey speeds and reduced need for calibration. While surface sensors have been demonstrated in real world environments, significant improvements in robustness and reductions to radial size, weight, and power consumption are required for such devices to be deployed in boreholes. To realise the first step towards the deployment of cold atom-based sensors down boreholes, we demonstrate a borehole-deployable magneto-optical trap, the core package of many cold atom-based systems. The enclosure containing the magneto-optical trap itself had an outer radius of (60 ± 0.1) mm at its widest point and a length of (890 ± 5) mm. This system was used to generate atom clouds at 1 m intervals in a 14 cm wide, 50 m deep borehole, to simulate how in-borehole gravity surveys are performed. During the survey, the system generated, on average, clouds of (3.0 ± 0.1) × 105 87Rb atoms with the standard deviation in atom number across the survey observed to be as low as 8.9 × 104

    Polarisation-insensitive generation of complex vector modes from a digital micromirror device

    Get PDF
    In recent time there has been an increasing amount of interest in developing novel techniques for the generation of complex vector light beams. Amongst these, digital holography stands out as one of the most flexible and versatile with almost unlimited freedom in the generation of scalar and complex vector light fields featuring arbitrary polarisation distributions and spatial profiles. In this manuscript we put forward a novel technique, which relies on the polarisation-insensitive attribute of Digital Micromirror Devices (DMDs). In a prior work where we outlined a new detection scheme based on Stokes projections we alluded to this technique. Here we outline the creation process in full, providing all the details for its experimental implementation. In addition, we fully characterise the performance of such technique, providing a quantitative analysis of the generated modes. To this end, we experimentally reconstruct the transverse polarisation distribution of arbitrary vector modes and compare the ellipticity and flatness of the polarisation ellipses with theoretical predictions. Further, we also generate vector modes with arbitrary degrees of non-separability and determine their degree of concurrence comparing this to theoretical predictions

    An atomic compass -- detecting 3D magnetic field alignment with vector vortex light

    Get PDF
    We describe and demonstrate how 3D magnetic field alignment can be inferred from single absorption images of an atomic cloud. While optically pumped magnetometers conventionally rely on temporal measurement of the Larmor precession of atomic dipoles, here a cold atomic vapour provides a spatial interface between vector light and external magnetic fields. Using a vector vortex beam, we inscribe structured atomic spin polarisation in a cloud of cold rubidium atoms, and record images of the resulting absorption patterns. The polar angle of an external magnetic field can be deduced with spatial Fourier analysis. This effect presents an alternative concept for detecting magnetic vector fields, and demonstrates, more generally, how introducing spatial phases between atomic energy levels can translate transient effects to the spatial domain

    Hybrid 3D ranging and velocity tracking system combining multi-view cameras and simple LiDAR

    Get PDF
    Scanning our surroundings has become one of the key challenges in automation. Effective and efficient position, distance and velocity sensing is key to accurate decision making in automated applications from robotics to driverless cars. Light detection and ranging (LiDAR) has become a key tool in these 3D sensing applications, where the time-of-flight (TOF) of photons is used to recover distance information. These systems typically rely on scanning of a laser spot to recover position information. Here we demonstrate a hybrid LiDAR approach which combines a multi-view camera system for position and distance information, and a simple (scanless) LiDAR system for velocity tracking and depth accuracy. We show that we are able to combine data from the two component systems to provide a compound image of a scene with position, depth and velocity data at more than 1 frame per second with depth accuracy of 2.5 cm or better. This hybrid approach avoids the bulk and expense of scanning systems while adding velocity information. We hope that this approach will offer a simpler, more robust alternative to 3D scanning systems for autonomous vehicles
    corecore